Afobazole modulates microglial function via activation of both sigma-1 and sigma-2 receptors.

نویسندگان

  • Javier Cuevas
  • Alex Rodriguez
  • Adam Behensky
  • Chris Katnik
چکیده

Microglial cells play a critical role in the neuroinflammatory response that accompanies various diseases of the central nervous system, such as ischemic stroke, and ATP is a major signaling molecule regulating the response of these cells to these pathophysiological conditions. Experiments were carried out to determine the effects of afobazole on microglial function and to identify the molecular mechanisms by which afobazole affects microglial cells. Afobazole was found to inhibit migration of microglial cells in response to ATP and UTP chemoattraction in a concentration-dependent manner. Inhibition of either σ-1 or σ-2 receptors decreased the effects of afobazole on microglia. In addition to inhibiting microglial cell migration, activation of σ receptors by afobazole decreased intracellular calcium elevation produced by focal application of ATP and UTP in isolated microglial cells. Furthermore, afobazole blocked membrane currents elicited by rapid application of ATP in microglial cells. Taken together, our data indicate that afobazole inhibits microglial response to P2Y and P2X purinergic receptor activation by functioning as a pan-selective σ-receptor agonist. In addition to modulating response to purinergic receptor activation, the effects of afobazole on microglial survival during in vitro ischemia were assessed. Application of afobazole during in vitro ischemia decreased microglial cell death during the ischemic episode and after a 24-h recovery period. Moreover, when afobazole was only applied after the ischemic episode, a significant enhancement in cell survival was still observed. Thus, afobazole acts via σ receptors to decrease microglial response to ATP and provides cytoprotection during and after ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Sigma‐1 receptor to cytoprotective effect of afobazole

Anxiolytic afobazole (5-Ethoxy-2-[2-(morpholino)-ethylthio]benzimidazole dihidrochloride) has pronounced ligand properties toward Sigma-1 receptor (σ1 receptor,SigmaR1) and MT 3 receptors. Our previous work demonstrated that afobazole possess cytoprotective effect in the in vitro model of menadione genotoxicity (Woods et al. 1997) through interaction with MT 3 receptor (Kadnikov et al. 2014). P...

متن کامل

Afobazole Modulates Neuronal Response to Ischemia and Acidosis via Activation of -1 Receptors

Afobazole is an anxiolytic medication that has been previously shown to be neuroprotective both in vitro and in vivo. However, the mechanism(s) by which afobazole can enhance neuronal survival remain poorly understood. Experiments were carried out to determine whether afobazole can decrease intracellular calcium overload associated with ischemia and acidosis and whether the effects of afobazole...

متن کامل

Sigma-1 receptor activation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia.

Sigma receptors are putative targets for neuroprotection following ischemia; however, little is known on their mechanism of action. One of the key components in the demise of neurons following ischemic injury is the disruption of intracellular calcium homeostasis. Fluorometric calcium imaging was used to examine the effects of sigma receptor activation on changes in intracellular calcium concen...

متن کامل

Afobazole activation of σ-1 receptors modulates neuronal responses to amyloid-β25-35.

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a continual decline of cognitive function. No therapy has been identified that can effectively halt or reverse its progression. One hallmark of AD is accumulation of the amyloid-β peptide (Aβ), which alone induces neuronal injury via various mechanisms. Data presented here demonstrate that prolonged exposure (1-24 hours) ...

متن کامل

sigma Receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons.

The sigma receptors have been implicated in the regulation of the cardiovascular system, and sigma-1 receptor transcripts have been found in parasympathetic intracardiac neurons. However, the cellular function of sigma-1 receptors in these cells remains to be determined. Effects of sigma receptor activation on voltage-activated K(+) channels and action potential firing were studied in isolated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 339 1  شماره 

صفحات  -

تاریخ انتشار 2011